Preparation and Raman Spectra of Some Tribromoselenium(IV) Cationic Complexes

ARTHUR FINCH, PETER N. GATES and DAVID R. NETHERTON

The Bourne Laboratory, Royal Holloway College, Egham, Surrey TW20 0EX, U.K.

Received December 13, 1978

Complexes of the type $[SeCl_3]^{+}[MCl_{n+1}]^{-}$, where $MCl_n = Lewis$ acid, are well-known and extensively characterised. In particular, X-ray [1] and Raman [2-4] studies have shown that the $SeCl_4 \cdot AlCl_3$ complex consists essentially of pyramidal $SeCl_3^{+}$ and tetrahedral $AlCl_4^{-}$ units. For the $SeCl_4 \cdot MCl_5$ (M = Sb, Nb, Ta) systems, however, the picture is less clear [3, 5]. Very recently the preparation of $SeBr_3^{+}$ MF_6^{-} (M = As, Sb) was briefly mentioned [6], although no details or spectroscopic data were given. We now report the preparation, analysis, and characterisation by Raman spectroscopy, of the complexes $SeBr_3$ - AlX_4 (X = Cl, Br).

Experimental

Tribromoselenium(IV) tetrabromoaluminate was prepared by addition of anhydrous aluminium tribromide (1.89 g, 0.0071 mol) to a suspension of selenium tetrabromide (2.86 g, 0.0072 mol) in dichloromethane (100 cm³) with stirring (2 h). The yellow product was filtered under dry nitrogen and dried in vacuo. Found: Br, 84.4%. Calc for AlBr₂Se: Br, 84.1%. Tribromoselenium tetrachloroaluminate was similarly prepared and isolated using aluminium trichloride (1.57 g, 0.011 mol) and monochloroselenium tribromide (3.15 g, 0.009 mol) in dichloromethane (100 cm³). Found: Br, 49.1; Cl, 29.2%. Calc. for AlBr₃Cl₄Se: Br, 49.2; Cl, 29.1%. Raman spectra were recorded on solid samples contained in dry melting-point capillaries using a Coderg pHO Raman spectrometer with exciting radiation of 647.1 nm (Coherent Radiation model 52 krypton laser).

Results and Discussion

Solid state Raman bands for the two compounds are listed in the Table. The spectra are consistent with ionic complexes involving pyramidal (C_{3v}) SeBr⁴₃ ions although of the four AlX⁷₄ modes expected only one, the $\nu_1(A_1)$ symmetric stretch, is observed with

TABLE. Solid State Raman Bands (cm⁻¹) for $SeBr_{3}^{+}AlBr_{4}^{-}$ and $SeBr_{3}^{+}AlCl_{4}^{-}$.

SeBr ₃ AlBr ₄ ^{-a}	SeBr ₃ ⁺ AlCl ₄ ^{- b}	AsBr ₃ ^c	Assignment
	480(v.w, br)		$\nu_3(T_2)AlCl_4$
400(v.w, br)			$\nu_3(T_2)AlBr_4$
	400(w,br)		
			$v_1(A_1)AlCl_4$
282(m) d 277(m)	349(w) 295(m) d	285 (m F)	$\nu_1(A_1)AlCl_4^-$ $\nu_3(E)SeBr_3^+$
277(m)	289(m) [']	262(^(13,12)	V3(E)3CB13
271(vs)	282(vs)	$272(\nu_1, A_1)$	$v_1(A_1)$ SeBr ⁺ ₃
212(w)			$v_1(A_1)AlBr_4$
136(m)	180(vw)		$\nu_4(T_2)AlCl_4$
	139(m)	$133(\nu_2, A_1)$	$v_2(A_1)$ SeBr ₃
	128(w,sh)		$\nu_2(E), AlCl_4$
118(vw)			$\nu_4(T_2)$, AlBr
110(w)	112(m,sh)	106	·· (T)0-D-+
101(w)	112(m,sh) 106(m)	$96 \left(\frac{v_{4,E}}{2} \right)$	$\nu_4(E)$ SeBr $_3^+$

^aAlBr₄ bands in Et₄⁺NAlBr₄ [7] at 394 (ν_3, T_2) , 212 (ν_1, A_1) , 114 (ν_4, T_2) and 98 (ν_2, E) cm⁻¹. ^bAlCl₄ bands in Cs⁺AlCl₄ [8] at 486-505 (ν_3, T_2) , 356 (ν_1, A_1) , 180-187 (ν_4, T_2) and 128 (ν_2, E) cm⁻¹. ^cPolycrystalline solid, ref. [9]. ^dResolved at -196 [°]C.

significant intensity in each case. This is consistent with a significantly greater scattering power of SeBr₃⁺ relative to AlX₄⁻. The four Raman-active bands expected for SeBr₃⁺ appear strongly and are assigned (Table) on the basis of (a) the expected pattern of relative intensities and splittings and (b) correspondence with the isoelectronic AsBr₃ [9]. The SeBr stretching modes at 282 cm⁻¹ (ν_1 , A₁) and the split $\nu_3(E)$ mode (295, 289 cm⁻¹) in SeBr₃⁺AlCl₄⁻ are both higher than in the AlBr₄⁻ complex (271 (ν_1); 282, 277 (ν_3) cm⁻¹) reflecting the same pattern in the analogous SBr₃⁺ complexes [10]. A Raman spectrum of the product from reaction of SeClBr₃ and SbCl₅ is more complex and, although the presence of SBr₃⁺ is apparent, it is not explicable on the basis of a simple SeBr₃⁺SbCl₆⁻ formulation.

Acknowledgement

We thank the Science Research Council for support (to D.R.N.).

References

- 1 B. A. Stork-Blaisse and C. Romers, Acta Cryst., B27, 386 (1971).
- 2 H. Gerding and H. Houtgraaf, Rec. Trav. Chim., 73, 759 (1954).

- 3 H. Gerding and D. J. Stufkens, Rev. Chim. Miner., 6, 795 (1969).
- 4 H. Gerding, Rec. Trav. Chim., 75, 589 (1956).
 5 F. W. Poulsen and R. W. Berg, J. Inorg. Nucl. Chem.,
- 40, 471 (1978).
 J. Passmore, E. K. Richardson and P. Taylor, *Inorg. Chem.*, 17, 1681 (1978).
- 7 D. H. Brown and D. T. Stewart, Spectrochim. Acta, 26A, 1344 (1970).
 8 A. Rubbens, F. Wallart, P. Barbier, G. Mairesse and J. P. Wignacourt, J. Raman Spectr., 7, 249 (1978).
 9 J. E. D. Davies and D. A. Long, J. Chem. Soc., 1273 (1971).
- (1971).
- 10 H. F. Askew and P. N. Gates, to be published.